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Abstract

In this paper the mathematical modeling of discontinuities using the discrete approximation and the continuum

approximation with weak discontinuities is presented. First, the kinematics of discontinuities is discussed, then two

constitutive models based on the continuum damage mechanics theory are developed. The first model is an isotropic

damage model and is used in the discrete approximation. The second model is an anisotropic damage model and is used

in the continuum approximation. These models are characterized for weighing the mode of failure in the failure cri-

terion. An energy analysis is proposed to establish the equations that relate the parameters of both constitutive models;

the fulfillment of the involved equations guarantee that both models are energetically equivalent. It is concluded that

the proposed models are suitable to reproduce the constitutive behavior of discontinuities.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The failure process in materials and structures can be associated to the formation of single cracks, cracks

bands and shear bands. Many models can be found in the literature; for example, in the eighties the effort

was on the development of the discrete crack model (Wawrzynek and Ingraffea, 1991) and the smeared

crack model (Isenberg, 1993). In the nineties, it was developed a type of finite element model capable of

modeling localized damage without remeshing, resulted in the embedded discontinuities approximations

(for example: Belytschko et al., 1988; Dvorkin and Assanelli, 1991; Simo et al., 1993; Lotfi and Shing, 1995;

Oliver, 1996; Armero and Garikipati, 1996; Sluys and Berends, 1998; Tano et al., 1998; de Borst et al.,
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2001); some of these models does not work out satisfactorily (Jir�asek, 2000), showing the need for im-
provements in some specific topics (Fern�andez, 2002).
Two types of approximation for embedded discontinuities can be identified: discrete and continuum. In

the discrete approximation of discontinuities it is considered that the body stops being continuous when
the discontinuity (crack) is formed; the constitutive behavior of the discontinuity is modeled by ‘‘dis-

placement jump-traction’’ relationships (e.g. Dvorkin and Assanelli, 1991; Lotfi and Shing, 1995). In the

continuum approximation of discontinuities it is considered that the body remains continuous after the

discontinuity (strain localization zone) is formed; the constitutive behavior of the strain localization zone is

modeled by a standard continuum type of constitutive equations (‘‘strain–stress’’ relationships). The

continuum approximation of discontinuities is divided in two groups: weak discontinuities (e.g. Belytschko

et al., 1988; Sluys and Berends, 1998) and strong discontinuities (e.g. Simo et al., 1993; Oliver, 1996). If the

strain localization band width k is very small ðk ! 0Þ, a strong discontinuity is considered. If the strain
localization band width is finite ðk � 0Þ, a weak discontinuity is considered. Must of the works in the
technical literature belong to the discrete approximation and the continuum approximation with strong

discontinuities.

The discrete and the continuum approximations actually represent real physical phenomena. The for-

mation and propagation of single cracks (discrete approximation) and shear and crack bands (continuum

approximation) have been identified and studied in many materials, such as concrete, steel, soils and rocks.

In the case of steel, it has been observed the formation of both types of discontinuities, singles cracks and

shear bands. In the case of concrete, the failure process initiates with the formation of microcracks uni-
formly distributed in bands (strain localization zones), which have an approximate width of three times the

maximum aggregate size (Baẑant and Oh, 1983).

This paper studies the mathematical modeling of discontinuities. This work is part of an ongoing project

on the numerical modeling of discontinuities by the finite element method. The project is composed of five

parts: (1) definition of kinematics of discontinuities, (2) variational formulation, (3) constitutive models for

discontinuities, (4) implementation in the finite element method and (5) numerical simulation of discon-

tinuities. This paper focuses on the definition of kinematics and the constitutive modeling of discontinu-

ities.
In this paper two different approximations are covered: discrete approximation and continuum ap-

proximation with weak discontinuities. First, the kinematics of discontinuities is presented, which defines

the displacement field and the strain tensor. Then, to define the constitutive behavior of discontinuities by

discrete approximation an isotropic damage model is proposed. For weak discontinuities, due to the

limitations of the isotropic damage model for this type of approximation, an anisotropic damage model is

developed. Finally, an energy analysis is presented to establish a relationship between both models. It is

concluded that the proposed models are suitable to reproduce the constitutive behavior of discontinuities

and that they are energetically equivalent if the equations relating the internal variables are fulfilled.
2. Kinematics of a medium with discontinuities

The kinematics of bodies with discontinuities can be established using two different approximations:

strong discontinuities or weak discontinuities. In the first, a discontinuous displacement field is defined and

it belongs to it the discrete approximation and the continuum approximation with strong discontinuities. In

the second, the displacement field is continuous, but the strains are discontinuous at the localization zone

boundaries; the continuum approximation with weak discontinuities belongs to this approximation.

In the following two subsections, a description of the kinematics of bodies with discontinuities is pre-

sented, defining the displacement field and the strain tensor associated to the strong and weak discontinuity
approximations.
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2.1. Strong discontinuities

Consider a solid and homogenous body (Fig. 1) whose material points are labeled by the global coor-

dinate system x ðx; yÞ. The body has a domain X and a boundary C ðC ¼ oXÞ. This body has a discontinuity
(crack) at S, which is contained in the subdomain Xh; the vector n, normal to the discontinuity, defines a

local coordinate system n̂ ðn; tÞ. The domain is divided into three subdomains: X ¼ X� [ Xh [ Xþ; the

subdomain Xþ is that located in the direction of n. The lines S�
h and S

þ
h bound the subdomain Xh, such that:

S�
h ¼ oX�

h \ oX� and Sþ
h ¼ oXþ

h \ oXþ, and are separated by a distance h.
The displacement field uðx; t̂Þ and the velocity _uðx; t̂Þ are defined as
uðx; t̂Þ ¼ �uðx; t̂Þ þ HSðxÞ½½u��ðx; t̂Þ ð1Þ

_uðx; t̂Þ ¼ ouðx; t̂Þ
ôt

¼ _�uðx; t̂Þ þ HSðxÞ½½ _u��ðx; t̂Þ ð2Þ
where �u and _�u are the ‘‘continuous’’ displacements and the ‘‘continuous’’ displacement rates; ½½u�� and ½½ _u��
are the displacement jump and the displacement jump rate; HS is a jump function, such that: HSðxÞ ¼ 0
8x 2 X�

h [ X� and HSðxÞ ¼ 1 8x 2 Xþ
h [ Xþ; t̂ is the time and the dot above the variable means the time

derivative (e.g. _u ¼ ot̂u).
The strains are defined as the symmetric gradient ðrsÞ of the displacement field. In the discrete ap-

proximation the strains are not defined at S, so the strain tensor � is only defined in X n S as

�ðx; t̂Þ ¼ rsu ¼ rs�uþ HSrs½½u�� ¼ �� x 2 X n S ð3Þ
where �� is the ‘‘continuous’’ strain tensor, which is the strain occurring in the continuous part of the body.
The corresponding strain rate tensor is defined as: _�ðx; t̂Þ ¼ rs _u ¼ rs _�uþ HSrs½½ _u�� ¼ _��. The main char-
acteristic of the discrete approximation is reminded by Eq. (3): the body behavior is established by means of

strain–stress relationships outside the discontinuity ðX n SÞ and by displacement jump-traction relation-
ships at the discontinuity ðSÞ.

2.2. Weak discontinuities

Consider a solid and homogenous body (Fig. 2) whose material points are labeled by the global coor-

dinate system x ðx; yÞ. The body has a domain X and a boundary C ðC ¼ oXÞ. This body has a discontinuity
(strain localization zone) at S, which is contained in the subdomain Xh; the vector n, normal to the dis-

continuity, defines a local coordinate system n̂ ðn; tÞ. The domain is divided into three subdomains:
X ¼ X� [ Xh [ Xþ; the subdomain Xþ is that located in the direction of n. The lines S�

h and Sþ
h bound the
Fig. 1. Body with a strong discontinuity.



Fig. 2. Body with a weak discontinuity.

1456 L.E. Fern�andez, G. Ayala / International Journal of Solids and Structures 41 (2004) 1453–1471
subdomain Xh and are separated by a distance h. The lines S�ðn ¼ n�Þ and Sþ ðn ¼ nþÞ bound the sub-
domain Xk, which corresponds to the strain localization zone, and are separated by a distance k (loca-
lization zone width: k ¼ nþ � n�); the subdomains Xk and Xh have the following relationships (Fig. 2):

Xk � Xh and k < h.
The displacement field uðx; t̂Þ and the velocity _uðx; t̂Þ are defined as
uðx; t̂Þ ¼ �uðx; t̂Þ þ Hkðn̂Þ½½u��ðx; t̂Þ ð4Þ
_uðx; t̂Þ ¼ ouðx; t̂Þ
ôt

¼ _�uðx; t̂Þ þ Hkðn̂Þ½½ _u��ðx; t̂Þ ð5Þ
where �u and _�u are the ‘‘continuous’’ displacements and the ‘‘continuous’’ displacement rates; ½½u�� and ½½ _u��
are the displacement jump and the displacement jump rate; Hk is a ramp function defined as
Hkðn̂Þ ¼ 0 8n < n�; Hkðn̂Þ ¼
n� n�

nþ � n�
8n� 6 n6 nþ; Hkðn̂Þ ¼ 1 8n > nþ
As before, the strains are the symmetric gradient ðrsÞ of the displacement field. In the continuum ap-

proximation the strains are defined in the whole domain X and can be calculated as
�ðx; t̂Þ ¼ rsu ¼ rs�uþ Hkrs½½u��|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
��

þlk
1

k
ð½½u�� � nÞs|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

½½���

ð6Þ
where lk is a function defined as: lk ¼ 1 8x 2 Xk and lk ¼ 0 8x 2 X n Xk; �� is the ‘‘continuous’’ strain
tensor, which is the strain occurring in the continuous part of the body; ½½��� is the strain jump which
takes place at the borders of the localization zone (Sþ and S�) and is obtained by considering that:

rHk ¼ oxHk ¼ on̂Hk
ox
on̂
¼ lk

k n. The corresponding strain rate tensor is defined as: _�ðx; t̂Þ ¼ rs _u ¼ rs _�uþ
Hkrs½½ _u�� þ lk

1
k ð½½ _u�� � nÞs ¼ _��þ ½½ _���.

Remark 1. Outside the localization zone the ‘‘continuous’’ strains of both approximations are equal:
��d ¼ ��wd x 2 X n Xk, but inside they are not: ��

d 6¼ ��wd x 2 Xk; however, if the softening band zone width is

very small ðk ! 0Þ, then ��d � ��wd x 2 Xk because HS � Hk. The superscript ‘‘d’’ refers to the discrete dis-
continuity approximation and ‘‘wd’’ refers to the weak discontinuity approximation.

It is important to point out the characteristics of the strain jump that emerge from its definition (6). For
this purpose, let express the strain jump in the local three dimensional coordinate system
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½½��� ¼
½½���nn ½½���nt ½½���ns
½½���tn ½½���tt ½½���ts
½½���sn ½½���st ½½���ss

2
4

3
5 ¼ 1

k

½½u��n 1
2
½½u��t 1

2
½½u��s

1
2
½½u��t 0 0

1
2
½½u��s 0 0

2
4

3
5 ð7Þ
From (7) may be observed that the kinematics of bodies with weak discontinuities establishes the following

conditions for the strain jump terms:

(1) ½½���tt, ½½���ts and ½½���ss must be zero: ½½���tt ¼ ½½���ts ¼ ½½���ss ¼ 0; this is called by Oliver (1996) ‘‘Strong Dis-
continuity Condition’’. In this paper this will be referred as kinematics condition of discontinuities.

(2) ½½���nn, ½½���nt and ½½���ns can be different from zero. The component ½½u��n of the displacement jump, which
corresponds to a Mode I in fracture mechanics, only contributes to ½½���nn. The component ½½u��t of the
displacement jump, which corresponds to a Mode II in fracture mechanics, only contributes to ½½���nt
and ½½���tn. The component ½½u��s of the displacement jump, which corresponds to a Mode III in fracture
mechanics, only contributes to ½½���ns and ½½���sn.

Both conditions are important, however here only will be dealt with the first because the need of its

fulfillment is the motivation to propose in this work an anisotropic damage model for the continuum

approximation. The second condition is also very important and will be used to identify some problems

with the finite element approximation; this will be presented in a forthcoming paper.
3. Constitutive model

In this paper, the constitutive behavior of the discontinuity is modeled by using a family of damage

constitutive models and considering that the material behavior is rate-independent and local and follows

the infinitesimal strain theory. Continuum damage mechanics is based on the thermodynamics of irre-

versible processes and the theory of the internal state variable (Simo and Ju, 1987; Mazars and Pijaudier-

Cabot, 1989). Basically, there are two types of damage models: (1) isotropic damage, which uses a scalar

damage variable and (2) anisotropic damage, which can use a damage tensor. In this paper, an isotropic

damage model is developed to model discontinuities by the discrete approximation and an anisotropic

damage model by the continuum approximation.
In this section, the basic concepts of a classic isotropic damage model are summarized as follows:

• Effective stress
r ¼ ð1� dÞ�r ¼ oWð�; rÞ
o�

¼ ð1� dÞC : � ð8Þ
• Free energy function
Wð�; rÞ ¼ ½1� dðrÞ�Weð�Þ; Weð�Þ ¼ 1
2
� : C : � ð9Þ
• Damage criterion
f ðr; qÞ ¼ sr � q gð�; rÞ ¼ s� � r ð10Þ

• Damage variable
d ¼ 1� qðrÞ
r
1

E
ð11Þ
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• Evolution law
_r ¼ k ð12Þ
• Hardening law
_q ¼ H_r ð13Þ
• Kuhn–Tucker conditions and the consistency requirement
kP 0; f ðr; qÞ6 0; kf ðr; qÞ ¼ 0 ð14Þ
k _f ðr; qÞ ¼ 0 ð15Þ
In the above equations d is the damage variable ðd 2 ½0; 1�Þ and is associated with an irreversible process,
such that _d P 0; the stress tensor r is a function of the strain tensor � and can be calculated by means of the
free energy function (per unit mass) Wð�; rÞ (9); We is the elastic free energy; C is the elastic constitutive
tensor, defined as: C ¼ k̂1� 1þ 2l̂I, k̂ and l̂ are Lame�s constants, 1 is the second order identity tensor
(1 ¼ dij; dij is the Kronecker Delta) and I is the fourth order identity tensor ðI ¼ 1

2
ðdikdjl þ dildjkÞÞ; the

function f defines the failure criterion in the stress space ðf ðr; qÞ6 0Þ; sr is a norm and q is a stress type
internal variable; the function g establishes the failure criterion in the strain space ðgð�; rÞ6 0Þ. s� is a norm
and r is a strain type internal variable (r ¼ maxfr0;maxðs�Þg; where r0 is the initial value of r, such that
r 2 ½r0;1Þ); E is the modulus of elasticity; k is a parameter called damage multiplier; H is the hardening/

softening modulus.
4. Isotropic damage models

4.1. Discrete approximation

The constitutive model for the discrete approximation uses the displacement jump as independent

variable. This model is rigid-perfect at the beginning of the response when the discontinuity is not formed,

thus some terms in the constitutive tensor are not bounded. It is inconvenient to regard this constitutive

tensor as the initial constitutive tensor and to try to use a damage variable ‘‘d’’ with a range d 2 ½0; 1�;
therefore, it is defined an ‘‘initial’’ constitutive tensor C0S associated to an intermediate state between the no
damaged and the completely damaged, which is proposed as
C0S ¼ n� nE þ t� tGþ s� sG ð16Þ
where n, t, s are unit vectors in the direction of the local axes n, t, s. The ‘‘initial’’ constitutive tensor is
defined in a convenient way, such that it is easy to establish a relationship between this constitutive model

and the anisotropic damage model for the continuum approximation. The proposed ‘‘initial’’ constitutive
tensor is similar to that obtained by Oliver (2000) for the discrete model as a projection of the strong

discontinuity approximation model: C0S ¼ n � C � n ¼ ð Eð1�mÞ
ð1þmÞð1�2mÞÞn� nþ Gt� tþ Gs� s; if the Poisson�s

ratio is zero ðm ¼ 0Þ both ‘‘initial’’ constitutive tensors are equal.
The constitutive tensor CS is defined as
CS ¼ ð1� ddÞC0S ð17Þ
where dd is a damage variable (scalar) for the discrete approximation, to be defined later.
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The free energy (per unit mass) Wd is defined as
Wd ¼ ð1� ddÞ1
2
½½u�� � C0S � ½½u�� ð18Þ
The traction vector can be calculated from the free energy as
T ¼ oWd

o½½u�� ¼ ð1� ddÞC0S � ½½u�� ð19Þ
The damage function f defines a failure criterion in the traction space and is given by
f ðsT; qdÞ ¼ sT � qd6 0 ð20Þ
where sT is the norm of the tractions and is defined as
sT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T �W½½u�� � T

p
ð21Þ
qd is a traction type internal variable and W½½u�� is a second order weight tensor.

The traction is associated with the plane that corresponds to the discontinuity. However, the orientation

of the discontinuity is unknown and it cannot be calculated using the damage function f . So it is necessary
to establish a complementary criterion that allows the determination of the orientation of the discontinuity;

e.g. the maximum principal stress or the maximum shear stress.

As above, it is also possible to define another damage function, g, to establish a damage criterion in the
displacement jump space
gðs½½u��; rdÞ ¼ s½½u�� � rd6 0 ð22Þ
where s½½u�� is the norm of the displacement jumps and is defined as
s½½u�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½½u�� �W½½u�� � ½½u��

q
ð23Þ
rd is a displacement jump type internal variable and W½½u�� is a second order weight tensor defined as
W½½u�� ¼
Wnn 0 0
0 Wtt 0

0 0 Wss

2
4

3
5 ð24Þ
with
Wnn ¼
1 if Tn P 0 and ½½u��n P 0

0 if Tn < 0




Wtt ¼
ðð½½u��nÞcritÞ

2

ðð½½u��tÞcritÞ
2

Wss ¼
ðð½½u��nÞcritÞ

2

ðð½½u��sÞcritÞ
2

ð25Þ
where ð½½u��nÞcrit, ð½½u��tÞcrit and ð½½u��sÞcrit are the critical values of the displacement jump for Modes I, II, and
III, respectively, and correspond to the displacement jump values when the discontinuity is unable to

transfer tractions. Also, the quantities Wnn, Wtt and Wss can be simply considered as values to weigh the mode

of failure in the failure criterion; for example, if it is considered that the failure is dominated just by the
Mode I of fracture, then Wnn ¼ 1 and Wtt ¼ Wss ¼ 0. Fig. 3 illustrates the value of ð½½u��nÞcrit and the loading
and unloading trajectories for the Mode I of fracture.



Fig. 3. Definition of the softening curve: Tn � ½½u��n.
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The displacement jump type internal variable rd is defined as
rd ¼ max
(
rd0 ;maxðs½½u��Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

s2½0;̂t�

)
ð26Þ
where rd0 is the initial value of r
d, here taking the value rd0 ¼ 0, thus the rd range is rd 2 ½0;þ1Þ.

The damage variable dd is related to the internal variables rd and qd by Eq. (11): d ¼ 1� qdðrdÞ
rd

1
E. Con-

sidering that the ranges of the internal variables are rd 2 ½0;þ1Þ and qd 2 ½0; ft�, where ft is the resistant
strength, the range of the damage variable for this model is: dd 2 ð�1; 1�. It can be observed that damage
variable range is not as the traditional continuum type models ðd 2 ½0; 1�Þ.
The damage function g that defines the failure surface is illustrated in Fig. 4. The failure surface initiates

as a point at the origin (j½½u��j ¼ 0 and rd ¼ 0). Then the surface grows in proportion to ð½½u��Þcrit when rd is
incremented.

The tangent constitutive operator is obtained from the constitutive relationship (19) by deriving it with

respect to the time
_T ¼ ð1� ddÞC0S � ½½ _u�� � _ddC0S � ½½u�� ð27Þ
(a) (b)

incrementing

Fig. 4. Damage criterion for the discrete approximation: (a) failure surface and (b) damage evolution.
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The term _dd is calculated as
_dd ¼ odd

ord
_rd ¼ ð1

�
� ddÞ �Hd

E

�
_rd

_rd ¼ _s½½u�� ¼
1

s½½u��
½½u�� �W½½u�� � ½½ _u��

ð28Þ
The tangent constitutive operators, which relates the traction rate vector _T with the displacement jump rate
vector ½½ _u��, are obtained by substituting (281) and (282) in (27):

• For the elastic loading and unloading range ð _dd ¼ 0Þ

_T ¼ ð1� ddÞC0S � ½½ _u�� ð29Þ
• For the nonlinear and neutral loading range ð _dd > 0Þ
_T ¼ ð1
"

� ddÞC0S þ
�
� ð1� ddÞ þHd

E

�
1

ðs½½u��Þ2

 !
ðC0S � ½½u��Þ � ð½½u�� �W½½u��Þ

#
� ½½ _u�� ð30Þ
Remark 2. Eqs. (29) and (30) are only valid for ½½u��n P 0. This is due to the physical sense of the Mode I of

fracture; there are just two options: the crack is opened ð½½u��n > 0Þ or is closed ð½½u��n ¼ 0Þ. On the other
hand, the values of ½½u��t and ½½u��s can be positive or negative depending on the sign of the traction com-
ponents Tt and Ts, respectively.

If the traction component Tn is negative, it will be necessary to modify the value of the constitutive tensor
term ðC0SÞnn ¼ ð1� ddÞE by an unbounded value: ðC0SÞnn ¼ 1. Then the same procedure and equations
established in this section may be used in this model.

Remark 3. If Tn < 0 the constitutive model is no longer isotropic, becoming anisotropic. However, in this
paper this model is referred as isotropic damage model by considering the case Tn > 0.

Summarizing. In this isotropic damage model for discrete approximation of discontinuities, the inde-
pendent variables are the strain � ð� ¼ ��Þ at X n S and the displacement jump ½½u�� at S. The dependent
variables are the stress r at X n S and the traction T at S. In this model the damage is localized at S and
there is no damage at X n S. ft and Hd are considered material properties.
4.2. Continuum approximation

This subsection analyzes whether the isotropic damage model is suitable to reproduce the constitutive

behavior of weak discontinuities. For this purpose, consider the constitutive model described in Section 2:
Eqs. (8)–(15). Fig. 5 illustrates the behavior of the model for the one dimensional case. It may be observed

that the initial response is not perfectly rigid as in the discrete approximation (Fig. 3). To evaluate the

model it should be noticed that the description given in Section 2 was not complete, it is still needed the

definition of the norms; in this paper, the following definitions are used: sr ¼ ffiffiffiffiffiffiffiffiffiffi
r : r

p
and s� ¼

ffiffiffiffiffiffiffiffiffi
� : �

p
.

This analysis starts from the stress–strain relationship, which is established from (6) and (8)
1

�
þ dwd

1� dwd

�
r ¼ C : ��

�
þ 1

k
ð½½u�� � nÞs

�
ð31Þ



Fig. 5. Stress–strain curve of the material at the localization zone using a weak discontinuity approximation.
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This equation is fulfilled if the following two equations are valid:
r ¼ C : �� ð32Þ
dwd

1� dwd

� �
r ¼ C :

1

k
ð½½u��

�
� nÞs

�
) dwd

1� dwd

� �
�� ¼ 1

k
ð½½u�� � nÞs ð33Þ
Eq. (32) establishes the elastic (undamaged) standard relationship between the ‘‘continuous’’ strains �� and
the stresses r. This equation implies that outside the strain localization zone the material behaves elastic

and there is no damage. Therefore it may be assumed that the nonlinear behavior, related to the damage, is
produced in the localization zone and is associated to the strain jump ½½��� (331). Eq. (332), which is obtained
by substituting (32) in (331), establishes the following condition:
��tt ¼ ��ts ¼ ��ss ¼ 0 ð34Þ
This condition, resulting from the kinematics condition, can be considered a limitation for the imple-

mentation of this constitutive model because the ‘‘continuous’’ strain tensor �� does not always fulfills it. To
overcome this problem, in this paper an anisotropic damage model that always fulfill this condition is

developed.
5. Anisotropic damage model

The application of isotropic damage models to the continuum approximation of discontinuities has the

drawback of not always fulfilling the kinematics condition when failure occurs. For this reason, in this

section an anisotropic damage model is developed, which should be suitable to model discontinuities. In

this paper, a constitutive model is considered to be suitable when it is capable of fulfilling the following two

conditions:

(1) Null tractions. If the material is completely damaged, i.e. dwd ¼ 1, then the discontinuity should not
transfer tractions; therefore: rnn ¼ rnt ¼ rns ¼ 0.

(2) Kinematics condition of discontinuities (strong discontinuity conditions): ½½���tt ¼ ½½���ss ¼ ½½���ts ¼ 0.

Firstly, before developing an anisotropic damage model for weak discontinuities, two anisotropic

damage models quoted in Simo and Ju (1987) were evaluated to determine whether they are suitable to

model discontinuities. These models come from the effective stresses concept (r ¼ M : �r and r ¼ M : C : �)
and effective strains concept ð�� ¼ M : � and r ¼ C : M : �Þ; where M is a fourth order tensor that char-

acterizes the damage, C is the elastic constitutive tensor, �r is effective stress and �� is the effective strain. In
this paper, the following definition of the damage tensor is proposed:
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M ¼ I� dwdðn� n� n� nþ n� t� n� tþ t� n� t� nþ n� s� n� sþ s� n� s� nÞ ð35Þ
where dwd is the damage variable (scalar) for the continuum approximation with weak discontinuities.

Unfortunately, in general this two models does not fulfill these two conditions simultaneously. The effective

stress model fulfills the null traction condition ðdwd ¼ 1) rnn ¼ rnt ¼ rns ¼ 0Þ, but does not fulfill the
kinematics condition because in general ½½���tt 6¼ 0 and ½½���ss 6¼ 0. The effective strain model fulfills the ki-
nematic condition ð½½���tt ¼ ½½���ss ¼ ½½���ts ¼ 0Þ, but does not fulfill the null traction condition (if �tt 6¼ 0 and/
or �ss 6¼ 0, it may be obtained that rnn 6¼ 0 for dwd ¼ 1).
After finding out that these models are not suitable to model discontinuities, a third model that fulfills

both conditions simultaneously is presented. To simplify the presentation of the model, the constitutive

equation is written 2 term by term in a local coordinate system and using the form � ¼ ½CS ��1 : r
I �nn ¼
1

ð1� dwdÞE rnn �
m
E

rtt �
m
E

rss

�tt ¼ � m
E

rnn þ
1

E
rtt �

m
E

rss

�ss ¼ � m
E

rnn �
m
E

rtt þ
1

E
rss

I �nt ¼
1

ð1� dwdÞð2GÞ rnt

I �ns ¼
1

ð1� dwdÞð2GÞ rns

�ts ¼
1

2G
rts

ð36Þ
In this model the strain jump ½½��� is associated with the ‘‘damaged’’ part of the strains ðdwd�Þ. To identify
and analyze the ‘‘undamaged’’ and the ‘‘damaged’’ part of the strain term �nn, Eq. (361) is divided in two
parts
�nn ¼ �ann þ �bnn ð37Þ

where
�ann ¼
1

ð1� dwdÞE rnn and �bnn ¼ � m
E

rtt �
m
E

rss ð38Þ
From Eqs. (37) and (38) may be identified the damaged part of the strain term �nn: ½½���nn (associated to the
Mode I of failure), and the undamaged part: ��nn, such that
�nn ¼ ��nn þ ½½���nn
��nn ¼ ð1� dwdÞ�ann þ �bnn
½½���nn ¼ dwd�ann



ð39Þ
The identification of the ‘‘damaged’’ (associated to the Mode II: ½½���nt and the Mode III: ½½���ns of failure)
and the ‘‘undamaged’’ (��nt and ��ns) parts of the strain terms �nt and �ns is straightforward
�nt ¼ ��nt þ ½½���nt
��nt ¼ ð1� dwdÞ�nt
½½���nt ¼ dwd�nt



ð40Þ
e black triangles point out which terms are function of the damage variable dwd.
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�ns ¼ ��ns þ ½½���ns
��ns ¼ ð1� dwdÞ�ns
½½���ns ¼ dwd�ns



ð41Þ
Remark 4. From the absence of the damage variable in equations (362), (363) and (366), it may be dem-

onstrated that the following terms of the strain jump tensor are zero: ½½���tt ¼ ½½���ss ¼ ½½���ts ¼ 0. Therefore,
the kinematics condition of discontinuities is fulfilled.

Remark 5. Given that the terms of the ‘‘continuous’’ strain tensor �� are bounded, it may be demonstrated
that this model fulfill the null traction condition as follows:
From ð361Þ and ð39Þ : rnn ¼ ð1� dwdÞðEÞ�ann; if dwd ¼ 1 then rnn ¼ 0

From ð364Þ and ð40Þ : rnt ¼ ð1� dwdÞð2GÞ�nt; if dwd ¼ 1 then rnt ¼ 0

From ð365Þ and ð41Þ : rns ¼ ð1� dwdÞð2GÞ�ns; if dwd ¼ 1 then rns ¼ 0
Remark 6. If the terms �nt and �ns were bounded and dwd ¼ 1, then ��nt ¼ ��ns ¼ 0 (Eqs. (40) and (41)), i.e. the
shear components of the ‘‘continuous’’ strain tensor related to the strain jump are always zero. But if the

term �nn was bounded and dwd ¼ 1, then, in general, ��nn 6¼ 0.

Now that the suitability of the proposed anisotropic damage model for the constitutive modeling of

weak discontinuities has been demonstrated, in what follows the characteristics of this model will be

presented. The free energy (per unit mass) is defined as: Wwd ¼ 1
2
� : CS : �, where CS is the fourth order

constitutive tensor, defined by (36). In Appendix A the constitutive matrix for the plane stress and plane

strain cases are presented. From Appendix A it may be observed that the constitutive matrices in this model

are symmetric. The stress tensor is calculated from (8): r ¼ o�W
wdð�; rÞ ¼ CS : �. The failure function f ,

defined as (10): f ðr; qwdÞ ¼ sr � qwd, is a function of the norm sr and the stress type internal variable qwd.
For this model the norm is defined as
sr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r~ : W� : r~

p
ð42Þ
where W� is a fourth order tensor and r~ is a second order tensor, whose terms correspond to the com-

ponents rnn, rnt, rns, defined as: r
~ ¼ n� n� n� n : r þH~ : r, H~ is a fourth order tensor to be defined

later in this paper.

The damage function g, defined as (10): gðs�; rwdÞ ¼ s� � rwd6 0, is a function of the norm s� and the
strain type internal variable rwd. For this model the norm is defined as
s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�~ : W� : �~

p
ð43Þ
where �~ is a second order tensor with components corresponding to those of the strain tensor associated to
the damage and in consequence to the non null components of the strain jump (see Eqs. (39)–(41))
�~ ¼
�ann �nt �ns
�tn 0 0

�sn 0 0

2
4

3
5 ¼ 1

dwd
½½��� ð44Þ
Considering the definition of �~ (44), the norm s� (43) can be written as
s� ¼
1

dwd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½½��� : W� : ½½���

p
ð45Þ
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where W� is a fourth order tensor defined as
3 Th
W� ¼ Wnnnnn� n� n� nþ Wntntn� t� n� tþ Wntntt� n� t� nþ Wnsnsn� s� n� s

þ Wnsnss� n� s� n ð46Þ
with
Wnnnn ¼
1 if rnn P 0 or �ann P 0

0 if rnn < 0 or �
a
nn 6 0




Wntnt ¼
ðð�annÞcritÞ

2

2ðð�ntÞcritÞ
2

Wnsns ¼
ðð�annÞcritÞ

2

2ðð�nsÞcritÞ
2

ð47Þ
The values of ð�annÞcrit, ð�ntÞcrit and ð�nsÞcrit correspond to those of the strain terms �ann, �nt and �ns when the
tractions are null ðqwd ¼ 0Þ at the localization zone boundaries. These values depend on the localization
zone width, k, and may be related to the displacement jump of the discrete approximation model. The
quantities of Wnnnn, Wntnt and Wnsns.can be simply considered as values to weigh the mode of failure in the

failure criterion.

From the definition of �~ (44) may be observed that the terms �~nt and �~ns correspond to the terms �nty�ns
of the strain tensor �, while the term �~nn corresponds to just a part of the strain term �nn ð�annÞ. Unfortunately,
�ann cannot be calculated only from the strain tensor; in this paper, two ways of calculating �

a
nn are presented
�ann ¼
1

ð1� dwdÞE n� n : CS : �

�ann ¼ �nn þ
m
E
t� t : CS : �þ

m
E
s� s : CS : �

ð48Þ
If (481) is used
3, then the strain tensor �~ can be calculated as
�~ ¼ 1

ð1� dwdÞE n� n� n� n : CS : �þH~ : � ð49Þ
with
H~ ¼ n� t� n� tþ t� n� t� nþ s� n� s� nþ n� s� n� s ð50Þ
Remark 7. Calculating �ann and consequently �
~ has the inconvenient that the value of the damage variable

dwdðrwdÞ a priori should be known. However, rwd is a function of s� and consequently of �ann, therefore, in the
numerical implementation of this model the use of a nonlinear iterative procedure to calculate s� and later
dwd is needed.

The failure function g is a function of the strain type internal variable rwd and is calculated as:
rwd ¼ maxfrwd0 ;maxðs�Þg, where rwd0 is the initial value of rwd; the range of rwd is rwd 2 ½rwd0 ;1Þ. Fig. 6 il-
lustrates the failure surface and its evolution when rwd increases. In this figure, the axes that define the space
are �ann, �nt and �ns and correspond to the strain tensor terms that are related to the damage. If the failure
initiates in pure Mode I, then the failure process starts at point A; if the failure initiates in pure Mode II,

then the process starts at point B and so on.
is equation is selected for having the most compact expression.



(a) (b)

Fig. 6. Damage criterion for the continuum approximation: (a) failure surface and (b) damage evolution.
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For the case of failure starting in pure Mode I, the internal variables would take the values: rwd½ftE ;þ1Þ
and qwd 2 ½0; ft�, with qwd0 ¼ ft. The damage variable, calculated by means of (11): dwd ¼ 1� qwdðrwdÞ

rwd
1
E, has a

range: dwd 2 ½0; 1�.
The tangent constitutive operator is obtained by time deriving the constitutive equation
_r ¼ _CS : �þ CS : _� ¼ d 0 _rwdC0
S : �þ CS : _� ð51Þ
with
C0
S ¼ odCS and d 0 ¼ ordwd ¼ ð1

�
� dwdÞ �Hwd

E

�
1

rwd
ð52Þ
Considering the Eq. (49), _rwd can be calculated as
_rwd ¼ _s� ¼
1

s�
½�annn� n : W� : n� n _�ann þ � : H~ : W� : H

~ : _�� ð53Þ
with
_�ann ¼
d 0 _rwd

ð1� dwdÞ2E
n� n : CS : �þ

d 0 _rwd

ð1� dwdÞE n� n : C0
S : �þ

1

ð1� dwdÞE n� n : CS : _� ð54Þ
and
_dwd ¼ d 0 _rwd ¼ d 0 _s� ð55Þ
To simplify the previous equations let define the constants A1 and A3
A1 ¼ n� n : W� : n� n�ann ¼ ðW�Þnnnn�ann ð56Þ
A3 ¼
d 0

ð1� dwdÞ2E
n� n : CS : �þ

d 0

ð1� dwdÞE n� n : C0
S : � ð57Þ
Substituting A1 and A3 in (53) and rearranging terms, an expression to calculate _rwd as a function of the
strain rate _� is obtained
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_rwd ¼ _s� ¼
1

ðs� � A1A3Þ
A1

1

ð1� dwdÞE

� �
n

�
� n : CS : _�þ � : H~ : W� : H

~ : _�

�
ð58Þ
From (51), (52) and (58), the tangent constitutive tensor that relates the stress rates _r and the strain rates _�
can be defined:

• For the elastic loading and unloading range ð _dwd ¼ 0Þ
th

on

eas
_r ¼ CS : _� ð59Þ
• For the inelastic and neutral loading range ð _dwd > 0Þ
_r ¼ CS

�
þ ð1
�

� dwdÞ �Hwd

E

�
1

rwd

� �
1

s� � A1A3

� �
A1

1

ð1� dwdÞE

� �
ðC0

S : �Þ
�

� ðn� n : CSÞ

þ ðC0
S : �Þ � ð� : H~ : W�Þ

��
: _� ð60Þ
Remark 8. Eqs. (59) and (60) are only valid for ½½���nn P 0. This is due to the physical sense of the Mode I of

fracture; there are just two options: the crack is opened 4 ð½½���nn > 0) ½½u��n > 0Þ or is closed ð½½���nn > 0)
½½u��n > 0Þ. On the other hand, the values of ½½���nt and ½½���ns can be positive or negative depending on the
sign of the stress components rnt and rns, respectively.

If the stress component rnn is negative (compression), then it will be necessary to substitute the value of

the constitutive tensor term ð½CS ��1Þnnnn ¼ 1
ð1�dwdÞE (Eq. (36)) by the value ð½CS ��1Þnnnn ¼ 1

E. Then the same

procedure and equations established in this section may be used in this model.

Summarizing. In this anisotropic damage model for continuum approximation of discontinuities, the

independent variable is only the strain �. The dependent variable is the stress r. In this model the damage is

localized at Xk and there is no damage at X n Xk. ft, H
wd and k are considered material properties.
6. Energy analysis

6.1. Fracture energy

It is important to develop equations that relate the parameters of the two constitutive models developed

here, in such a way that these can be compared. For this purpose, an ‘‘Energy Analysis’’ of a body with a

discontinuity is proposed to find those equations. From this energy analysis relationships for the internal

variables and the softening modulus are obtained.

The starting point of the energy analysis is to calculate the strain energy of a body with a discontinuity;

this is done for both approximations. In this paper, it will be considered that the body behavior is elastic,

except for the discontinuity where the damage takes place. The strain energy of the body U considering a
discrete approximation can be calculated as
e continuum approximation there is no crack, there is a localization zone. The term crack is used to facilitate the presentation.

strate that ½½���nn < 0 is not valid, consider a very small localization zone width ðk ! 0Þ; if ½½���nn < 0, then k < 0 and Xk < 0.

might not be negative ðXk < 0Þ.
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Ud ¼
Z

XnS

Z t̂i

0

r : _�� d̂tdX þ
Z
S

Z t̂i

0

TS � ½½ _u�� d̂tdC ð61Þ
where t̂i is the time in the instant i. The first term corresponds to the energy of the continuous part of the
body and is the elastic strain energy. The second one corresponds to the energy associated to the dis-
continuity.

The strain energy of the body U considering a continuum approximation can be calculated as
Uwd ¼
Z

X

Z t̂i

0

r : _�� d̂tdX þ
Z

Xk

Z t̂i

0

r : ½½ _��� d̂tdX ð62Þ
If the localization zone width is considered to be small, then the first terms of (61) and (62) may be con-

sidered as equal (Remark 1); these terms correspond to the strain energy associated to the undamaged part

of the continuum. If the strain energy of both models is the same, then the following equation must be

fulfilled:
Z
S

Z t̂i

0

TS � ½½ _u�� d̂tdC ¼
Z

Xk

Z t̂i

0

r : ½½ _��� d̂tdX ð63Þ
Remark 9. The interior integral of the first term of Eq. (63) ð
R t̂i
0
TS � ½½ _u�� d̂tÞ corresponds to the fracture

energy Gf of the cohesive crack model of Hillerborg et al. (1976). The interior integral of the second term
ð
R t̂i
0

r : ½½ _��� d̂tÞ corresponds to the density of fracture energy cf of the band crack model of Baẑant and Oh
(1983). These models are related through the localization zone width k, in such a way that Gf ¼ kcf .
6.2. Relationships between variables

Lets consider the hypostasis that the localization zone width is small, in such a way that the following

relationship between the tractions of the discrete approximation and the stresses of the continuum approx-

imation may be established: ðTSÞn ¼ ðrkÞnn, ðTSÞt ¼ ðrkÞnt and ðTSÞs ¼ ðrkÞns. These tractions and stresses can
be calculated from the displacement jump and the strain jump, as established by the constitutive equations

• Discrete approximation
½½u��n ¼
1

ð1� ddÞE Tn ½½u��t ¼
1

ð1� ddÞGTt ½½u��s ¼
1

ð1� ddÞGTs ð64Þ
• Continuum approximation
½½���nn ¼
dwd

ð1� dwdÞE rnn ½½���nt ¼
dwd

ð1� dwdÞð2GÞ rnt ½½���ns ¼
dwd

ð1� dwdÞð2GÞ rns ð65Þ
Substituting (64) and (65) in (63) (for the two dimensional case)
Z
S

Z t̂i

0

ð1� ddÞðE½½u��n½½ _u��n þ G½½u��t½½ _u��tÞ d̂tdS

¼
Z

Xk

Z t̂i

0

ð1� dwdÞ
dwd

ðE½½���nn½½ _���nn þ 4G½½���nt½½ _���ntÞ d̂tdX ð66Þ
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The kinematics of the continuum approximation establishes that (7): ½½���nn ¼ 1
k ½½u��n, ½½���nt ¼ 1

2k ½½u��t and
½½���ns ¼ 1

2k ½½u��s. Therefore, to have equal strain energy in both approximations either of the following
equations must be fulfilled:
5 Th
ð1� ddÞ ¼ ð1� dwdÞ
dwd

1

k
ð67Þ
qd

Erd
¼ qwd

Erwd � qwd
1

k
ð68Þ
To verify the fulfillment of these equations, the relationships between the variables of these models (rd and
rwd; qd and qwd) should be established. From the definition of the norm s�, rwd can be written as:

rwd ¼ 1
dwd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW�Þnnnnð½½���nnÞ

2 þ 2ðW�Þntntð½½���ntÞ
2

q
. Considering the kinematics of the strain jumps, this equation

can be written as: rwd ¼ 1
dwd

1
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW�Þnnnnð½½u��nÞ

2 þ 1
2
ðW�Þntntð½½u��tÞ

2
q

. From this equation and given that

ðW�Þnnnn ¼ ðW½½u��Þnn and 1
2
ðW�Þntnt ¼ ðW½½u��Þnt, the internal variables rd and rwd are related as
rwd ¼ 1
k
1

dwd
rd ð69Þ
From (69) can be deduced the following equation: Erd ¼ EðkdwdrwdÞ ¼ Ekð1� 1
E

qwd

rwdÞr
wd ¼ ðErwd � qwdÞk and

given that qwd ¼ qd, it may be concluded that Eq. (68) is fulfilled. If (68) is fulfilled, then the discrete and the
continuum models are energetically equivalent.
The relationship between the softening modulus of both models is obtained below. This relationship

allows to compare the softening curve of these models. Given that qwd ¼ qd and if a linear softening
modulus is considered (weak discontinuities: qwd ¼ q0 þHwdðrwd � rwd0 Þ; Discrete approximation:

qd ¼ q0 þHdrd) the following equation can be established:
Hwd

Hd
¼ rd

rwd � rwd0
ð70Þ
Substituting rd, from Eq. (69): ðrd ¼ kdwdrwdÞ, in (70) and after some algebraic manipulations a relationship
between the softening modulus is obtained
Hd ¼ Hwd

kð1� Hwd

E Þ
ð71Þ
Hwd ¼ kHd

1þ k Hd

E

ð72Þ
It should be pointed out that (71) and (72) are also valid for multilinear softening curves 5.

Remark 10. Given a bounded value of Hd, if k ! 0 then Hwd ! kHd ! 0. This proves that in strong

discontinuities the softening modulus is zero: Hwd ¼ 0 (Simo et al., 1993).
e demonstration is straightforward.



1470 L.E. Fern�andez, G. Ayala / International Journal of Solids and Structures 41 (2004) 1453–1471
7. Conclusions

This paper is focused on the mathematical modeling of discontinuities. It is considered that the dis-

continuities are caused by localized damage and they are studied with two different approaches: discrete
approximation and continuum approximation with weak discontinuities. In the first approximation the

constitutive behavior of discontinuities is modeled by ‘‘displacement jump-traction’’ relationships and the

second one by ‘‘strain–stress’’ relationships. The kinematics and the constitutive modeling of discontinuities

is presented. From the contents of this paper it can be concluded

• The definition of the kinematics of discontinuities allows to establish the characteristics that the consti-

tutive models must fulfilled. In particular, the kinematics condition for weak discontinuities impose lim-

itations to the direct application of the isotropic damage model, in such a way that it was necessary to
propose an Anisotropic one.

• The proposed isotropic damage model for the discrete approximation and the anisotropic damage

model for the continuum approximation of weak discontinuities are suitable to model discontinuities.

The suitability of the anisotropic damage model comes from the fulfillment of the null tractions and

kinematics conditions for discontinuities. Both models have been numerically implemented and used

to simulate the fracture of concrete specimens, giving good results. One important characteristic of

these models is that they weigh the mode of failure in the failure criterion; this gives a great deal of

flexibility in their application. For particular applications, the next step in the development of these
models is to define a different damage variable for each mode of fracture; but this falls out of the scope

of this paper.

• The energy analysis is a way to guarantee the equivalence between models. This analysis sets the equa-

tions that must be fulfilled to make both models equivalent. In addition, the obtained equations allow to

relate the discrete approximation model to the fictitious crack model of Hillerborg et al. (1976) by means

of the fracture energy and the continuum approximation model to the crack band model of Baẑant and

Oh (1983) by means of the density of fracture energy.
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Appendix A. Anisotropic model. Constitutive matrices

In what follows, the anisotropic damage model constitutive matrices are presented. The matrices are

defined in a local coordinate system ðn; s; tÞ and they relate the stress vector ðr ¼ frnn; rtt; rntgTÞ with the
strain vector ð� ¼ f�nn; �tt; cntg

TÞ: r ¼ CS�.

• Plane stress ðrss ¼ 0Þ
CS ¼

ð1� dÞE
ð1� m2 þ m2dÞ

ð1� dÞmE
ð1� m2 þ m2dÞ 0

ð1� dÞmE
ð1� m2 þ m2dÞ

E
ð1� m2 þ m2dÞ 0

0 0 ð1� dÞG

2
66664

3
77775 ðA:1Þ



L.E. Fern�andez, G. Ayala / International Journal of Solids and Structures 41 (2004) 1453–1471 1471
• Plane strain ð�ss ¼ 0Þ
CS ¼

ð1� dÞð1� mÞE
ð1� m � 2m2 þ 2m2dÞ

ð1� dÞmE
ð1� m � 2m2 þ 2m2dÞ 0

ð1� dÞmE
ð1� m � 2m2 þ 2m2dÞ

ð1� m2 þ m2dÞE
ð1� 3m2 þ 2m2d � 2m3 þ 2m3dÞ 0

0 0 ð1� dÞG

2
66664

3
77775 ðA:2Þ
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